Power Stations COURSE SYLLABUS

Course Code	Course Name		Credits	Contact Hours			
0401580	Power Stations		3	3 T			
			I	·			
INSTRUCTOR/COORDINATOR							
Name		Dr.Talal Aljaafreh					
Email	tmjaafreh@mutah.edu.jo						
TEXTBOOK							
Title	Power (Mainter	Power Generation Handbook : Selection, Applications, Operation, Maintenance					
Author/Year	Philip Kiameh, 2019						
Other Supplemental Materials							
Title		Power generations technologies					
Author/Year		Paul Breeze, 2014					
Electronic Materials							

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Introduction: energy and power; conservation of energy, and forms of energy; theory of heat engines and the laws of thermodynamics; heat engines; heat transfer: conduction, convection and radiation; comparison of energy content and efficiency of different fuels; use of energy in society; coal, oil and gas power stations; nuclear energy; hydroelectricity; solar energy; advantages and disadvantages of different methods of generating electricity.

B. Pre-requisites (P) or Co-requisites (C)

None

C. Course Type (Required or Elective)

Compulsory

SPECIFIC GOALS

A. Specific Outcomes of Instruction

- CLO1- The student should understand the basic energy conversion methods and techniques [1].
- CLO2- The student should be able to distinguish the different types of power stations based on the principle of operation [1].

CLO3- The student should be able to analyze the dynamic operation of the various power

station using the proper table sheets and charts [7]

CLO4- The student should be able to analyze the economics of different power stations and in particular renewable energy stations [7].

Fifth : Course Plan Distribution

B. Student Outcomes Addressed by the Course

1	2	3	4	5	6	7		
\checkmark						\checkmark		

BRIEF LIST OF TOPICS TO BE COVERED					
List of Topics	No. of Weeks	Contact Hours			
Review of some thermodynamic principles: First and second laws of thermodynamics, perfect and imperfect gases, vapors, reversibility, Carnot cycle.	1	3			
Open and closed systems, energy types, entropy, enthalpy, process and cycle, P-V and T-s diagrams, Fuels and combustion	2	6			
The Rankine cycle: The ideal Rankine cycle, superheat, reheat, regeneration, feedwater heating, open contact feedwater heaters, closed type feedwater heaters, Cogeneration.	2	6			
Gas turbine and combined cycles: Gas turbine cycles, the ideal Brayton cycle, the nonideal Brayton cycle, combined cycles.	2	6			
Principles of nuclear energy: The atomic structure, chemical and nuclear reactions, energy from nuclear reactions, nuclear fusion and fission, radioactivity, decay rate and half-lives, fission reactor types	2	6			
Hydero- electric plants: Water power, advantages of hyder-electric plants, hydrology, site selection of hydro-electric plants, classification of hydro-electric plants, hydraulic turbines.	2	6			
Power plant economics: Cost of electrical energy, capital cost of plants, operating cost, effect of load factor on unit energy cost, fixed and operating costs of steam plants, hydro- plants, and nuclear plants, electricity cost reduction.	2	6			
Total	15	45			

EVALUATION							
Assessment Tool		Due Date	Weight (%)				
Mid Exam		According to the university calendar	30				
Course Work (Hor Projects,etc.)	neworks, Quizzes,	One week after being assigned	20				
Final Exam		According to the university calendar	50				
ABET's Students Learning Outcomes (Criterion # 3)							
Rel	ationship to program of	outcome					
ABET 1-7							
1.	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.						
2.	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.						
3.	an ability to communicate effectively with a range of audiences.						
4.	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.						
5.	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.						
6.	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.						
7. 🗸	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.						